
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 2

(Some slides adapted from Susan E. Sim)

Announcements
Labs 1,2 Due today

Lecture Notes 2 2

Previous Class…
Brief Review of S/W Engineering
Introduction to Tools & Methods
Review Questions
● T or F – Software Engineering can be defined as

the practice of programming a software product.
◘ False

Lecture Notes 2 3

● Why do we need software engineering?
◘ Many reasons

• To build larger systems
• Reduce costs
• Have some level of confidence in the quality of the system

● What is a S/W Lifecycle Model?
◘ An Abstract representation of the software process - that

defines the process from inception through maintenance

More Review Questions
●What are the 3 elements that are

necessary to create a S/W product?
◘ People
◘ Processes
◘ Tools

●Why do we need tools?
Scaling problem

Lecture Notes 2 4

◘ Scaling problem
◘ They support the process/people so that we can build

bigger systems
● Why is there a gap between research and

practice?
◘ Leaning curve
◘ Unclear payoffs
◘ Focus tends to be more on what and not how

Today’s Lecture

Software Tools
Methods & Notations
Process Modeling
● Agile Process

Lecture Notes 2 5

● Agile Process
● Extreme Programming

Notations, Tools & Methods

Tools:
●Machines, Executable Programs

Methods:

Lecture Notes 2 6

● Processes, Procedures
Notations:
● Languages Used by Tools and Methods

Remember the Guitar Example ...
Tool: Guitar
Method: How I play (strum/pick/style)
Notation: Music

2

Applying Tools in SE
Computer Aided Software Engineering
(CASE)

Different types of CASE Products:
● A Simple Tool

◘ Supports 1 specific task

Lecture Notes 2 7

● A Toolkit
◘ A Set of Independent Tools

● A Workbench
◘ Supports a set of tasks or activities (maybe

Requirements & Specs only)
◘ May be several tools that work together

● An Environment
◘ Supports the entire process
◘ May be several workbenches – integrated

Often Focused on Some Aspect
● Language-Centered

◘Program Structures
◘Grammatical Descriptions

● Integrated

Environments

Lecture Notes 2 8

◘Data Repository
● Process-Centered

◘Development Process

Analyst Workbench or Upper CASE
Supports Upper Part of the Waterfall
● Requirements
● Design

Tools to Support
● Drawing Tools

◘ Simple Complex
● Database

Lecture Notes 2 9

● Database
● Data Analysis Tool

◘ Consistency Checking, Completeness
● Generate Reports

◘ Adhere to Company Standards
Examples:
● Argo UML
● Rational Rose
● TogetherJ

Programmer Workbench / Lower CASE
Supports Lower Part of the Waterfall
● Implementation
● Testing
● Maintenance

Tools to Support
● Language Sensitive Text Editor (WebEdit)
● Debugging

Lecture Notes 2 10

● Debugging
● Code Generators
● Syntax Checker
● Performance Analyzer
● Configuration Management
● Compiler
● Generation of Test Data
● Unit Test Tools
● Simulation
● Regression Testing
● Refactoring Tools

What is Refactoring?
Cleaning up Code
●Does not change the output
●Renaming Variables
●Restructuring Code
●Changing Logic

Lecture Notes 2 11

Helps with:
● Legacy Code Code Atrophy
● Spaghetti Code

Management Workbench
Supports Management of the Project
● Planning
● Control

Tools to Support
● Configuration Control

◘ Design or Data Analysis
◘ Workflow

Lecture Notes 2 12

◘ Workflow
● Work Assignment

◘ Assigning Resources Efficiently
● Cost Estimation
● Reliability

◘ Estimates Reliability
◘ Forecasting Testing time

3

Take a break!
Stretch, Relax
Get some water, Use the restroom
Get to know your classmates…
Etc…..

When we return…

More on Software Tools
●Why we need them and what they are

Modeling
●What they are and how they apply to S/E

Lecture Notes 2 13

Before Break we discussed
Review Questions
●What are Tools, Methods and Notations?

◘Tools: Machines, Executable Programs
◘Methods: Processes, Procedures
◘Notations: Languages used by tools and Methods

Wh t th diff t t f CASE

Lecture Notes 2 14

●What are the different types of CASE
products?
◘Simple Tool Supports 1 task
◘Toolkit Set of Independent Tools
◘Workbench Supports a set of tasks or activities
◘Environment Supports the entire process

More Review Questions
●What is a Analyst Workbench? (AWB)

◘Supports the upper part of the “Waterfall”
●What is a Programmer Workbench? (PWD)

◘Supports the lower Part of the “Waterfall”
●What is a Management Workbench? (MWB)

Lecture Notes 2 15

◘Supports the Management of the Project
●What is the difference between a WB and an

Environment?
◘WB supports part of the process whereas an

environment supports the entire process
●What is Refactoring?

◘Cleaning up the code – without changed the output

Integrated Project Support
Environments (IPSE)

Supports the Entire Project
● Analyst Workbench
● Programmer Workbench
●Management Workbench

Lecture Notes 2 16

●Management Workbench

Tight Integration vs. Loose Integration

Integrated Environments / Workbenches

Problem

Requirements
Specification

Requirements Eng

Design

Analyst WB

(Upper CASE)

Lecture Notes 2 17

Specification

Program

Working
Program

Adapted from Van Vliet

Implementation

Testing

Maintenance

Programmer WB
(lower CASE)

IPSE
CASE

Process-Centered Environment (PSEE)

Supports the Development Process
Closely Tied to Process Modeling
● Petri-Nets
● State Transition Diagrams
● Etc

Lecture Notes 2 18

● Etc…
Tends to support Back-End
(Imp. & Testing)
● Easier to Formalize

4

Petri-Net View of PSEE

Code
Ready

From

Hold
Review

Reviewed
Code

Revised
Next
Step

EndUpdate

Lecture Notes 2 19

Review
Scheduled

Coding

From
Mgt

Minutes

Revised
Code

Step

Some of the Tools/Environments We
Will Use

Eclipse JDT
JUnit
Eclipse Plugins

Lecture Notes 2 20

Argo UML (Or Rational Rose)
Etc…

Remember -- Selecting a Tool?

Tools
I

T
y
p
i

Lecture Notes 2 21

Techniques

S/W Process Model

D
E
A
L

i
c
a
l
l
y

Methods

A Method is a technical prescription for how
to perform a collection of activities, focusing
on integration of techniques and guidance on
their use.

Lecture Notes 2 22

● Prescribe to lay down a rule

A Technique is a prescription of how to
perform a particular activity
● May include rules on how to describe a product of

that activity in a particular notation
● Smaller than a Method
● Example: Unit Testing

Graphically

Activity 2 Activity 1 Activity 2

Technique –
How to perform
as specific Activity

Method –
How to perform
Many Activities

Lecture Notes 2 23

Activity 1

Activity 3 Activity 3

Tools vs. Methods
Construction
● Tools

◘Hammer
◘Saw
◘Measuring Tape

Lecture Notes 2 24

●Methods
◘Rules for Construction

5

Tools vs. Methods – Take 2

I give you a camera

I teach you how to take a picture:
● Auto-focus

P h th B tt

Lecture Notes 2 25

● Push the Button
I teach you how to shoot a very nice picture
● Lighting
● Aperture
● Shutter Speed
● Composition

Method vs. Methodology
A method is a description of how we do
something
A methodology is the study of methods
Methodology (from Wikipedia)

Lecture Notes 2 26

The common idea here is the collection, the
comparative study, and the critique of the
individual methods that are used in the given
discipline or field of inquiry

Notations
A notation is a representation scheme (or
language)
A process model is an abstract
description of how to conduct a collection
of activities focusing on resource usage

Lecture Notes 2 27

of activities, focusing on resource usage
and dependencies between activities
●Often expressed using a notation

Notations, Tools & Methods

Tools:
●Machines, Executable Programs

Methods:

Lecture Notes 2 28

● Processes, Procedures
Notations:
● Languages Used by Tools and Methods

Remember the Guitar Example ...
Tool: Guitar
Method: How I play (strum/pick/style)
Notation: Music

Modeling

Lecture Notes 2 29

Modeling

A model is an abstract representation of a
specification

Defined by a consistent set of rules
● Dictate the meaning of the components

d i t ti

Lecture Notes 2 30

… and interactions
Some Basic Principles
● Models are used for breaking down concepts

◘ Requirements or Design (Unified Modeling Language)
● Used for communicating
● Choice of the Model influences the Product

◘ Object Models
◘ Data Repository Models
◘ Pipe and Filter
◘ Etc..

6

For Example

Different Modeling Styles Can Influence the
Product
● Styles restrict the way in which components can be

connected
● Prescribe patterns of interaction
● Promote fundamental principles

Lecture Notes 2 31

◘ Rigor, separation of concerns, anticipation of change,
generality, incrementality

◘ Low coupling
◘ High cohesion

Architectural styles are based on success stories
● Almost all compilers are build as “pipe-and-filter”
● Almost all network protocols are build as “layers”

Model Case Toolset

P j tD i P

Design
editor

Code
generator

Lecture Notes 2 32

Project
repository

Design
translator

Program
editor

Design
analyser

Report
generator

Data Repository

Modeling (2)

One Model One Viewpoint
◘ Specification View vs. Design View
◘ Runtime View vs. Compile-Time View
◘ Static View vs. Dynamic View

Model should be realistic

Lecture Notes 2 33

Model should be realistic

Model is usually incomplete
● Abstraction – doesn’t include details

Other Disciplines use Models too…
● Architects – Buildings
● Circuit Board Designers

Another Example

Lecture Notes 2 34

Models Can Be Informal or Formal

Process Modeling

A process model is an abstract
description of how to conduct a
collection of activities, focusing on
resource usage and dependencies
b t ti iti

Lecture Notes 2 35

between activities
●Often expressed using a notation

Remember: a notation is a representation scheme (or language))

Software Process (revisited)
General Software Process Activities

Phase Purpose Deliverables
User Requirements Problem Def User Req. Spec.

Acceptance Test Plan
S/W Requirements Problem Analysis S/w Req. Spec.

Support Service Brief
System Test Plan

Lecture Notes 2 36

Architectural Design High Level Solution Architectural Design
Support Serv. Design
Integration Test Plan

Production Implementation
& Testing

Detailed Design
Tested Software
Est. Sup. Serv.

Transfer Installation Installed Software

Maint. & Support S/w Operations &
Support

Maintained &
Supported S/W

7

We Discussed Traditional S/W Process
Models

Waterfall
Spiral
Incremental

Lecture Notes 2 37

…etc

Criticisms with Traditional Process
Models

Generally don’t handle change well

Implementation is delayed until

Lecture Notes 2 38

p y
uncertainties are completely
resolved

Too mechanistic to be used in detail

The Agile Method

Agile – “having a quick resourceful
and adaptable character” – Merriam-Webster

Works best for smaller teams and

Lecture Notes 2 39

projects

Quick Product Releases

Four Central Values of Agile
Methods
1. Focus on the human role of s/w dev

2. Continuously turn out tested working
software

Lecture Notes 2 40

so t a e

3. Foster the relationship with the client
(over nitpicking the contract)

4. The Development Group

What makes a Method Agile?
Incremental
● Small software releases with rapid cycles

Cooperative
● Customers and developers working together

constantl close comm nication

Lecture Notes 2 41

constantly - close communication

Straightforward
● Method is easy to learn, modify and well

documented

Adaptive
● Able to make last moment changes

How is Agile Different

“What is new about agile methods is
not the practices they use but their
recognition of people as the primary
drivers of project success, coupled

ith i t f

Lecture Notes 2 42

with an intense focus on
effectiveness and maneuverability.
This yields a new combination of
values and principles that define an
agile world view”

Highsmith anc Cockburn (2001, p 122)

8

Take a break!
Stretch, Relax
Get some water, Use the restroom
Get to know your classmates…
Etc…..

When we return…

More on the Agile Process Model
Extreme Programming

Lecture Notes 2 43

Before Break we discussed
Review Questions
●What is included in an Integrated Process

Support Environment (IPSE)?
◘Analyst Workbench
◘Programmer Workbench

Lecture Notes 2 44

◘Management Workbench
●What is the difference between a method and

a technique?
◘Method: technical prescription for how to perform a

collection of activities
◘Technique: prescription of how to perform a

particular activity

More Review Questions
●What is a model in SE?

◘An abstract representation of a specification
●Name two characteristics of a good model?

◘Low Coupling & High Cohesion
◘Rigor, Separation of concerns, Anticipation of

change, Generality, Incrementality , etc…

Lecture Notes 2 45

●Name a Software Process Activity and the
associated deliverables:
◘Check the slides.. There are several examples

●Name a key difference between the Agile
process model and Traditional process
models
◘Several – eg, Customer is in the development team

Four Central Values of Agile Methods

1. Focus on the human role of s/w dev
● Interactions Between Developers “Communality”
● Close Team Relationships
● Close Working Arrangements
● Team Spirit

Lecture Notes 2 46

2. Continuously turn out tested working
software
● Small releases
● Frequent Intervals (Hourly Monthly)
● Keep Code Simple & Technically Advanced

Reduces Documentation

Four Central Values of Agile Methods

3. Foster the relationship with the client
(over nitpicking the contract)
● Short releases allow clients to see progress

4. The Development Group has specific
qualities

Lecture Notes 2 47

qualities
● Includes Developers and Customer Reps
● All should be:

◘ Informed
◘ Competent
◘ Authorized to make changes

● Contracts need to be formed with tools that
support these changes

What makes a Method Agile?

Incremental
● Small software releases with rapid cycles

Cooperative
C t d d l ki t th

Lecture Notes 2 48

● Customers and developers working together
constantly - close communication

Straightforward
● Method is easy to learn, modify and well

documented
Adaptive
● Able to make last moment changes

9

How is Agile Different

“What is new about agile methods is
not the practices they use but their
recognition of people as the primary
drivers of project success, coupled

ith i t f

Lecture Notes 2 49

with an intense focus on
effectiveness and maneuverability.
This yields a new combination of
values and principles that define an
agile world view”

Highsmith anc Cockburn (2001, p 122)

Agile vs. Traditional Plan-driven
Home-Ground
Area

Agile Methods Plan-driven
Methods

Developers Agile,
knowledgeable,
collocated, &
collaborative

Plan-Oriented,
adequate skills,
access to external
knowledge

Lecture Notes 2 50

Customers Dedicated,
knowledgeable,
collocated,
collaborative,
representative, &
empowered

Access to
knowledgeable,
collaborative,
representative,
and empowered
customers

Agile vs. Traditional Plan-driven
Home-Ground
Area

Agile Methods Plan-driven
Methods

Requirements Largely emergent;
rapid change

Knowable early;
largely stable

Architecture Designed for
current

i

Designed for
current and
f bl

Lecture Notes 2

51

requirements foreseeable
requirements

Refactoring Inexpensive Expensive
Size Smaller teams

and Products
Larger Teams and
Products

Primary
Objective

Rapid Value High Assurance

Examples of Agile Methods

XP Extreme Programming
Scrum
● ”Getting out-of play ball back into the game”

FDD Feature Driven Development

Lecture Notes 2 52

p
RUP Rational Unified Process

Extreme Programming (XP)
Invented by Kent Beck in 1996
● “Seat of the pants” fix to Chrysler project
● To fix problems caused by long development cycles of

traditional process models

Beck Published in 1999
“Extreme Programming Explained: Embrace Change”

C t h t t i i S/W P

Lecture Notes 2 53

● Current hot topic in S/W Process
● Loved and Hated
● Tries to associate s/w process with eXtreme sports

Idea: Take a good programming practice and
push it to the extreme
● Eg. Testing
● Testing is good so… do it all the time

Premise of XP
The Four Values

Lecture Notes 2 54

Communication Simplicity Feedback

Courage

Hmmm.. But aren’t these standard “Best Practices”?
What’s new here?

10

6 Phases Of Development
Exploration
Planning
Iterations to Release
Productionizing

Lecture Notes 2 55

Maintenance
Death

Exploration Phase

Customers
● Story Cards – 1 feature per card

◘ Customer wish list for first release

Developers
● Get familiar with

Lecture Notes 2 56

◘ Tools
◘ Technology
◘ Practices
… to be used

● Architecture possibilities explored – Prototype
● Tailor process to the project

A few weeks to months
● How familiar is tech to programmers

Planning Phase
Prioritize Stories
● First Small release agreement

Effort Estimate for each story
S h d l A t

Lecture Notes 2 57

● Schedule Agreement
◘Usually < 2 months

Takes a few days

Iterations to Release Phase
Several Iterations before 1st Release

of Iterations determined in planning phase

Each iteration takes 1-4 wks to implement

Lecture Notes 2 58

Select stories wisely
● these enforce system arch. for the entire system
● Customer chooses stories for each iteration

Functional tests created by Customer
● Run at the end of each iteration

At the end of last iteration Production

Productionizing Phase

End testing before release

New changes may be found
●Decide whether to include in current release

Lecture Notes 2 59

●Documented for later implementation
Maintenance Phase

Iterations shortened

Maintenance and Death Phases
Maintenance
● May need more people

◘ Maintain current production
◘ Produce new Iterations
◘ Change team structure

● Development slows

Lecture Notes 2 60

Death Phase
Either…
● All stories complete & quality is satisfactory
● Not delivering expected outcomes
● Too expensive to continue

11

XP Lifecycle Model

Lecture Notes 2 61

